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The ground-state phase diagram of the two-dimensional Falicov-Kimball model with
nearest-neighbour and next-nearest-neighbour hoppings has been studied in the pertur-
bative regime where hoppings are small compared with the on-site Coulomb interaction.
The phase diagram at fourth-order exhibits a richer structure than the one of the ordinary
Falicov-Kimball model.
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1. INTRODUCTION

The Falicov-Kimball model has been proposed in 1969 to description the metal-
insulator transition(1). Later on, it has been applied in another important problems:
mixed valence phenomena(2), crystallization and alloy formation(3) and others. In
the simplest version of this model, we are dealing with two types of particles
defined on a d-dimensional simple cubic lattice Z

d : immobile “ions” and itinerant
spinless “electrons”. There exist also other interpretations of the model(3,4).

The Hamiltonian of such a model, defined on a finite subset � of Z
d has the

form

H� = H0,� + V�, (1)

where

H0,� = U
∑
x∈�

wx nx − µi

∑
x∈�

wx − µe

∑
x∈�

nx , (2)
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V� = −
∑

〈x,y〉∈�

t(c†x cy + c†ycx ) (3)

Here c†x and cx are creation and annihilation operators of an electron at lattice site
x ∈ �, satisfying ordinary anticommutation relations. The corresponding number
particle operator is nx = c†x cx . wx is a classical variable taking values 0 or 1; it
measures the number of ions at lattice site x . The chemical potentials of the ions
and electrons are µi and µe, respectively.

The Falicov-Kimball model in its basic, “backbone” form given by (2), (3) is
too oversimplified to give quantitative predictions in real experiments. However,
it is nontrivial lattice model of correlated electrons and captures many aspects of
behaviour of such systems. It allows rigorous analysis in many situations; for a
review, see ref. 4. One can hope that a good understanding of this simpler model
might lead to better insight into the Hubbard model, where rigorous results are
rare (5).

One can try to make the FK model more realistic by adding various terms to
the “backbone” hamiltonian (2), (3) in the manner analogous to that in the original
Hubbard paper(6). (Other possibility is enlargement of the space of internal degrees
of freedom(4), but we will not consider it here.) The most important among them
are: consideration of another types of lattice, particle statistics and presence of
magnetic field(7); correlated hopping (analysed in ref. 8–10); taking into account
the Coulomb interactions between ions(11), as well as (small) hopping of heavy
particles(12,25); consideration of the next-nearest-neighbour hoppings (let’s name
this modification as the t − t ′ model in analogy with the corresponding version of
the Hubbard model(13)). This last effect has been analysed in only few papers. In
ref. 14, authors established that if t ′ � t , then the phase diagram of the t − t ′ FKM
does not differ too much from the diagram of the pure FK model. A remarkable
paper(15) is devoted to analysis of three-dimensional strongly asymmetric Hubbard
model (i.e. generalized FK one) with three hopping parameters, for large Coulomb
interaction constant U , in the neighbourhood of the symmetry point. Authors have
determined rigorously the phase diagram in the space of parameters – hopping
constants. Their analysis resembles the second order perturbation theory, but in
fact goes far beyond it: authors have proven that higher orders will not modify
the phase diagram obtained by the use of the Hamiltonian truncated at the second
order. Moreover, they have proven that the phase diagram is also stable with respect
to the small quantum and thermal perturbations.

In this paper, author examined influence of further terms of perturbation ex-
pansion (3-rd an 4-th ones) on the ground-state phase diagram in two-dimensional
situation in the half-filling case, i.e. when the average value of the total particle
number

∑
x∈�(nx + wx ) is equal to the number of sites |�|. Effects of higher-

order-terms turned out to be very interesting in the ordinary FK model(7,16,17),
where a whole collection of rigorous results, concerning properties of ground
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states and low-temperature behaviour, has been obtained. At present, there ex-
ist well established techniques providing such information for certain class of
quantum lattice models. They have been developed in two series of papers:
by Kotecký et al.(12,21) and Datta et al.(22–25)(one should mention also earlier
achievements:(7,16,17)). In this paper, the methodology taken from papers(22–25) is
used. It consists of three main steps:

1. Using certain version of perturbation theory, one constructs the effective
Hamiltonian. In the case of FK models, effective Hamiltonian can be
expressed in classical one-half spin variables (it is an Ising model with
complicated interactions).

2. For such a Hamiltonian, one constructs zero-temperature (ground-state)
phase diagram.

3. One tries to prove Peierls conditions. Roughly speaking, they guarantee
that the ground state is divided by finite energy gap from excited ones.
Moreover, they give geometric description of low-lying excited states in
geometric terms (contours). If this step is successful, then the quantum
Pirogov-Sinai theory guarantees the stability of ground-state phase dia-
gram. More precisely, the T = 0 phase diagram of truncated Hamiltonian
differs only in a small degree from the low-temperature phase diagram of
the full Hamiltonian, including all orders of perturbation theory.

In this paper, the programme above has been partially realized for the t − t ′

Falicov-Kimball model up to fourth order of perturbation theory.
As a first step of the study, the effective Hamiltonian has been derived; it can

be written as the Hamiltonian for the Ising model with complicated interactions,
leading to strong frustration. After that (step 2), ground states of the Hamiltonian
have been looked for, and the phase diagram has been constructed. In the orders
2 and 3 it was possible to determine it rigorously for the whole phase diagram.
In the fourth order, some regions have been determined rigorously, whereas for
the remaining part, orderings have been established with the use of the restricted
phase diagram method. The fourth-order phase diagram turned out to be more
complicated than in the case of the ordinary FKM; the nnn hopping influences the
phase diagram in a very strong manner. And last (step 3), Peierls conditions have
been established for some regions of phase diagram (six phases among thirteen
present on phase diagram), thus giving rigorous stability of these phases. For some
other four phases, Peierls conditions have not been established, but their validity is
rather convincing,as follows from restricted phase diagram method analysis. For
the remaining, very small part of the phase diagram (occupied by three phases),
ground states are degenerate. In order to analyse this region of the full system, it
is necessary to go into further orders of perturbation theory.

The outline of the paper is as follows. In the Section 2, the effective Hamilto-
nians up to fourth order perturbation theory have been derived. In the Sections 3
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and 4 ground states and phase diagram of the effective Hamiltonians in subsequent
orders have been determined. Moreover, effects of neglected higher-order-terms
as well as temperature have been discussed. The last Section 5 contains summary
and conclusions, and the Appendix – some technical considerations concerning
(pseudo)symmetries of the phase diagrams for effective Hamiltonians.

2. PERTURBATION THEORY AND EFFECTIVE HAMILTONIAN

2.1. Nonperturbed Hamiltonian, Their Ground States

and Phase Diagram

Let us write explicit form of Hamiltonian we will work with:

H� = −
∑

d(x,y)=1

t(c†x cy + c†ycx ) −
∑

d(x,y)=√
2

t ′(c†x cy + c†ycx ) + U
∑
x∈�

wx nx

−µi

∑
x∈�

wx − µe

∑
x∈�

nx , (4)

In this paper we examine the model in the range of parameters t, t ′ � U . We
will assume that t ′/t ∈ [−1, 1]. This is not principal limitation. However, in real
systems, the value of t ′ is usually smaller than that of t , although both quantities
are of the same order.

For derivation of the effective Hamiltonian, the method worked out in the
paper(23) has been applied. It has this advantage that it can serve (provided certain
conditions are fulfilled) as a first step to application of the quantum Pirogov-Sinai
method and proving thermal and quantum stability of ground states. Detailed
description of all these procedures can be found in ref. 22–25. Here, only the
application of the method and results will be given, as the general scheme is
identical as in the paper (25).

To obtain the final expression, we must divide states of the system onto
ground and excited ones, and to find corresponding projections onto both groups.
These collection of states are identical as in ref. 25.

Let us begin our analysis starting from the classical part of the Hamiltonian
(2); it is well known, see ref. 25. The Hilbert space Hx on the x-th site is spanned
by the states: |wx , nx 〉 or, explicitely, |0, 0〉, |1, 0〉, |0, 1〉 and |1, 1〉. The corre-
sponding energies are: 0; −µi ; −µe; U − µi − µe. The phase diagram consist of
the following four regions. In region I , defined by µi < 0, µe < 0, all sites are
empty. In two twin regions I I+, I I− given by conditions: I I+: µi > 0, µi > µe,
µe < U (for I I−, one should interchange the subscripts e and i) all sites are in
the |1, 0〉 (corresp. |0, 1〉) state. In the region I I I , given by: µi > U, µe > U , all
sites are doubly occupied. This situation is illustrated on Fig. 1.



Phase Diagram of the Two-dimensional t–t ′ Falicov-Kimball Model 589

Fig. 1. Phase diagram of the nonperturbed Hamiltonian (2).

We choose the stats |1, 0〉 and |0, 1〉 as ground states. They are separated
from excited ones by energy gap � = min(µi , µe, U − µi , U − µe). It means
that we analyse the phase diagram in some subset of the region I I+ ∪ I I− (the
shaded region on the Fig. 1). The most interesting situation takes place in the
neighbourhood of the µi = µe line between regions I I+ and I I−; on this line, we
observe a macroscopic degeneracy.

The projection operator on ground states at x-th site is

P0
x = (wx − nx )2 (5)

2.2. Effective Hamiltonians up to 4-th Order

of Perturbation Theory: d = 2

Expression for effective Hamiltonian in fourth-order perturbation theory at
half-filling for the ordinary FK model (in arbitrary dimension) can be found in
(25), Table 2. The 4-th order effective Hamiltonian for t − t ′ FKM can be derived
using the same methodology, described in ref. 25, Sections. 2 and 3; for this reason,
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details will be not repeated here. (It should be stressed that expressions up to 4-th
order have been derived, for the d = 3 model, in the paper (15). Unfortunately,
authors didn’t analyse effects of orders 3 and 4).

As a final result of calculations, one obtains (from now on, the lattice dimen-
sion is equal to 2):

• Second-order correction:

H (2)
0 = −h

∑
x

Sx +
∑

d(x,y)=1

t2

2U

(
4S3

x S3
y − 1

)

+
∑

d(x,y)=√
2

t ′2

2U

(
4S3

x S3
y − 1

)
(6)

where: h = µi − µe; Sx is the classical one-half spin on the lattice site x ;
it is related to the variable wx by the formula: Sx = (2wx − 1)/2.

• Third-order correction:

H (3)
0 = t2t ′

U 2

∑
x,y,z

(
6 Sx Sy Sz − 1

2
(Sx + Sy + Sz)

)
(7)

where summation is performed over all triples {x, y, z} of lattice sites such
that {x, y} and {y, z} are nearest neighbour bonds forming the angle π/2.

• Fourth-order correction is the most complicated one and is a sum of two-
body (2b) and four-body (4b) interactions:

H (4)
0 = C |�| + J 2b

1

∑
d(x,y)=1

S3
x S3

y + J 2b
2

∑
d(x,y)=√

2

S3
x S3

y + J 2b
3

∑
d(x,y)=2

S3
x S3

y

+ J 2b
4

∑
d(x,y)=√

5

S3
x S3

y + J 2b
5

∑
d(x,y)=√

8

S3
x S3

y + J 4b
1

∑
π1(xyzw)

Sx Sy Sz Sw

+ J 4b
2

∑
π2(xyzw)

Sx Sy Sz Sw + J 4b
3

∑
π3(xyzw)

Sx Sy Sz Sw

+ J 4b
4

∑
π4(xyzw)

Sx Sy Sz Sw (8)

In formulas above, we have: C = 3τ/2 + 5τ ′ + 3τ ′′/2; J 2b
1 = −18τ − 32τ ′;

J 2b
2 = 6τ − 36τ ′ − 18τ ′′; J 2b

3 = 4τ − 4τ ′ + 6τ ′′; J 2b
4 = 12τ ′; J 2b

5 = 4τ ′′; J 4b
1 =

40τ + 80τ ′; J 4b
2 = 40τ ′′; J 4b

3 = 40τ ′; J 4b
4 = 40τ ′, where: τ = t4/U 3; τ ′ = t2t ′2/

U 3; τ ′′ = t ′4/U 3. The four-site sets πα(xyzw) are defined in the following way:
π1 (“square”) is formed by spins occupying vertices (0, 0), (0, 1), (1, 1) and
(1, 0); π2 (“diagonal square”) is formed by: (0, 0), (1, 1), (0, 2) and (−1, 1); π3



Phase Diagram of the Two-dimensional t–t ′ Falicov-Kimball Model 591

(“big triangle”): (0, 0), (0, 1), (0, 2) and (1, 1); π4: (“rhomb”) (0, 0), (1, 0), (2, 1)
and (1, 1). The summation over four-body interactions in (8) is performed over all
sets obtained from plaquettes π1, . . . , π4 above by operations compatible with lat-
tice symmetries (translations, rotations by multiple of π/4, reflections, inversions);
the plaquette πα(xyzw) occupies sites x, y, z, w.

3. GROUND STATE PHASE DIAGRAMS IN ORDER 2 AND 3

3.1. Order 2

The ground-state phase diagram of the system described by the Hamiltonian
(6) can be obtained by rewriting the Hamiltonian in the following equivalent
form:

H (2)
0 =

∑
π1(xyzw)

h(2)
0;xyzw + C ′|�|, (9)

where C ′ is a constant and

h(2)
0;xyzw = t2

U
(Sx Sy + Sy Sz + Sz Sw + Sw Sx ) + 2t ′ 2

U
(Sx Sz + Sy Sw)

−h

4
(Sx + Sy + Sz + Sw) (10)

(lattice sites x, y, z, w are arranged anticlockwise on the plaquette).
It is easy to check that the Hamiltonian rewritten in the form (10) is an

m-potential (22,23,26). If we encounter such an opportunity, we can replace the
process of minimization of energy over the whole lattice by the problem much
simpler: the minimization of energy over the set of plaquette configurations. These

Fig. 2. Possible configurations of 2 × 2 plaquettes. For plaquettes ii and iii one should take into account
plaquettes obtained from those illustrated above by rotations. Small dots denote empty lattice sites (or
spins “down” in the spin language), big dots – occupied lattice sites (spins “up”, respectively).
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Fig. 3. Ground state phase diagram in the second order perturbation theory for the Hamiltonian (9),
(10). h is the difference of chemical potentials. Phases: E (“empty”), F (“full”), N (“Néel”) and S
(“stripe”) are unique (modulo rotations and translations), whereas phases D, D′ are macroscopically
degenerate. In order 3, the phase diagram is a small deformation of the above picture.

configurations are presented on Fig. 2. It leads to the picture of the phase diagram
as illustrated on Fig. 3. This diagram possess two obvious symmetries. One of
them is due to symmetry of the hamiltonian (6) with respect to the change of sign
t ′ → −t ′; the phase diagram is also symmetric with respect to such a change of
sign. The second one is the symmetry of phase diagram with respect to the change
h → −h; however, in this case, one should also replace configurations by their
mirror images (i.e. Sx → −Sx ).

Phases E (“Empty”) and F (“Full”) are built from plaquettes i+ and i−, re-
spectively (the E phase is the configuration N o = 0 on the Fig. 4). These phases are
unique. We have similar situation for regions N (“Néel” phase; Fig. 4, configuration
N o = 10) and S (“Stripe”; see Fig. 4, configuration N o = 11, which can be con-
sidered as an analogon of the “planar” phase in ref. 15). They are build from
plaquettes i i i× and i i i||, respectively. Again, these phases are unique (modulo
translations).
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Fig. 4. Phases appearing on the ground-state phase diagram for the fourth-order effective Hamiltonian
(8). Configurations: 0,2,4–11 are unique modulo lattice symmetry operations. Configurations possess-
ing densities 1/9, 1/6 and 3/8 are degenerate and form infinite series; two first examples for every such
a series are shown (1,1′ etc.). Plaquette configurations being ’building blocks’ for phases of density
1/9 are drawn on the lattice configuration N o = 1.

The situation for phases D and D′ is different. These phases are build from
plaquettes i i+, i i−, respectively (see Fig. 4, configuration N o = 5 as an example).
However, they are non-unique, as there is a large dose of freedom in building of
lattice configurations from these plaquettes. As a result, these phases are macro-
scopically degenerate. We encounter similar situation as for the antiferromagnetic
Ising model on triangular lattice.
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3.2. Order 3

Now, let us check how the phase diagram will change under switching third-
order terms on. Let us rewrite the third-order correction (7) in the equivalent
“plaquette” form:

H (3)
0 =

∑
π1(xyzw)

h(3)
0;xyzw (11)

where

h(3)
0;xyzw = 6 t2t ′

U 2
(Sx Sy Sz + Sy Sz Sw + Sz Sw Sx + Sw Sx Sy)

− 3 t2t ′

2U 2
(Sx + Sy + Sz + Sw) (12)

(again spins x, y, z, w are arranged anticlockwise on the plaquette).
The full Hamiltonian, up to third-order terms, is the sum of terms (10) and

(12). As in previous Subsection, one can check that it is an m-potential. Moreover,
it turns out that the presence of third-order terms does not modify ground states of
plaquettes. In the other words, plaquette configurations which were ground-states
in the second order, remain ground states also in third order! This implies that
degeneracy of phases D and D′ is not lifted and they still are degenerate. What does
change, it is location of the boundary between phases. The difference in location
of phase boundaries in orders 2 and 3 is of the order t2t ′/U 2.

The phase diagram in third order possess certain kind of symmetry. It is
discussed in more details in the Appendix. At this moment, we only conclude that
the phase diagram in 3. order is a small deformation of the second-order phase
diagram.

4. PHASE DIAGRAM IN FOURTH ORDER

Regions occupied by phases D, D′ in both second and third order exhibit
macroscopic degeneracy. One can expect that they are sensitive against perturba-
tions and that in some of next orders this degeneracy will be lifted. It happens yet
in fourth order; we describe the situation below.

This picture has been obtained by the restricted phase diagram
method(9,18,19,20). Recall that in this method, one takes into account all peri-
odic configurations up to certain values of lattice sites N per elementary cell,
and then one minimizes the energy over this set of configurations. For phases:
0, 4, 5, 7, 10, 11 these results have been also made rigorous by construction of
m-potentials.

The ground-state phase diagram is much more complicated than for the
ordinary FKM – see Figs. 4 and 5 but it is still manageable (in some respects
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Fig. 5. The ground-state phase diagram for the fourth-order effective Hamiltonian (8). Only topological
aspects of the phase diagram are displayed, as most of phases occupy very narrow regions. Phases:
1–4, 6–9 and 12: width of these regions is of fourth order in expansion parameter; other phases
occupy regions of width of the second order in expansion parameter. Only one quarter (i.e. values
h > 0, t ′ > 0) are shown, as for other quarters, topological structure of the phase diagram is the
same.

it is similar to the phase diagram of the FKM on triangular lattice, studied in
ref. 7). Thirteen phases have been detected on phase diagram; three of them
are degenerate. Moreover, for each phase present for h > 0, there corresponds
their “mirror” for h < 0 (this mirror is obtained by the change of occupied sites
onto unoccupied ones and vice versa). For non-degenerate phases, number of
sites per elementary cell does not exceed 12. Such a picture emerged at N = 12
(it corresponds to 2000 trial configurations) and hasn’t changed up to N = 27
(where more than 3 × 107 trial configurations has been taken into account). This
opportunity strongly suggests that the phase diagram in fourth-order is exact,
i.e. that configurations present on phase diagram are true minimizers among all
configurations.

The phase diagram in fourth order possess certain (pseudo)symmetries. Con-
siderations concerning this aspect are somewhat lengthy and technical, so they
have been relegated to the Appendix. Let us summarize the picture by the state-
ment that the topological structure of phase diagram is the same for h > 0 and
h < 0; for every phase i appearing for h > 0, we have corresponding mirror î
for h < 0. Differences in location of boundary lines are of the order p4(t, t ′)/U 3

(where p4(t, t ′) is some homogeneous fourth-order polynom in t and t ′).
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A very interesting effect of the presence of the term with next-nearest-
neighbour hopping is the appearance of the anomally large region occupied by the
phase 5 (FK-like phase with density 1/4). At first sight, phases appearing in the
fourth-order perturbation theory should occupy region of the width p4(t, t ′)/U 3.
However, it turns out that phase 5 occupies a region of width proportional to t ′2/U ,
i.e. of the same order as the Néel phase, appearing in the second order! One can
explain this phenomenon in the following way: Regions occupied by phase D (the
situation for phase D′ is analogous) has width of the order t ′2/U both in 2-nd and
in 3-rd order. The fourth-order perturbation lifts this degeneracy. As a result, the
phase D (an ‘ancestor’) transforms into non-degenerate phase 5 (the ‘descendant’)
of the same density, and occupies region approximately as large as an ‘ancestor’
D.

Most of ordered phases present on the phase diagram is unique (modulo
symmetries, i.e. translations and rotations compatible with lattice structure) but
also phases degenerate even in the 4-th order (phases 1, 3, 12) have been observed.
More precisely, the restricted phase diagram method detects here only finite de-
generacy, i.e. finitely many ground states with identical energy and density but
different orderings (we don’t count trivial degeneracy due to symmetry operations,
i.e. translations, rotations and reflections). Number of these ground states grows
with N ; for N = 27 we observed: eight phases of equal energy and density 1/9,
(the first two such configurations are phases 1 and 1′); eight phases of density 1/6
(the first two such configurations are phases 3 and 3′); five phases of density 3/8
(the first two of them are 12 and 12′).

In thermodynamic limit, number of these phases grows to infinity. It can
be seen using the following arguments (the reasoning below is in fact due to
one of anonymous referees; I am very indebted for this remark). First, remember
that the range of interactions in the fourth-order hamiltonian does not exceed 3
lattice spacings. It implies that the hamiltonian can be written as a sum over 3 × 3
plaquettes. Let us choose one family of configurations with density ρ = 1

9 . Now,
look at one given configuration (say, No. 1). It is seen that it can be ‘glued’ from
three plaquette configurations (they are marked on Fig. 4, phase N o = 1). But they
can be ‘glued’ together in many different ways, giving lattice configurations of the
same energy. There is no uniqueness in such a ‘gluing’ procedure, i.e. resulting
lattice configuration is non-unique; the configuration No. 1′ is one of possible
examples. (Situation here is similar to that which happens in the second order
for phases D and D′). As a conclusion, this argument proves presence of infinite
number of configurations, possessing identical density and energy. An analogous
situation happens for configurations 3 and 12.

Phase diagrams in orders 2 and 3 are rigorous (by writing out Hamiltonians
as sums of m-potentials). Phase diagram in order 4 is only partially rigorous. For
six phases: 0, 4, 5, 7, 10, 11 author has found m-potentials in a manner analogous
as in refs. 7,10,17. Unfortunately, it has been achieved not for all regions occupied
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by these phases, but only in some open subsets of these regions. Moreover, ex-
pressions for m-potentials are lengthy and complicated and don’t help too much in
clarification of the situation. For these reasons, and because the ‘rigorous’ regions
don’t cover the whole phase diagram – expressions for m-potentials have been
skipped.

An analysis above concerned the ‘truncated’ phase diagram, i.e. the phase
diagram of the fourth-order effective Hamiltonian (8). Which changes can result
as an effect resulting from neglected next-order corrections and temperature?

It turns out that the classical Peierls condition is fulfilled for certain open
subsets occupied by phases: 0, 4, 5, 7, 10, 11 (it is an immediate consequence of
existence of m-potentials; see ref. 26). It turns out that also quantum Peierls con-
ditions are fulfilled (by calculations analogous as in ref. 25). From these facts, it
follows that regions occupied by these phases deform in only small manner upon
thermal and quantum perturbations. This assertion concerns regions of phase dia-
gram sufficiently far from phase boundaries obtained for fourth-order Hamiltonian.
More precisely, it means that the ‘excluded’ region, where stability does not hold,
possess width of the order p5(t, t ′)/U 4 (p5(t, t ′) is some homogeneous polynom
in t, t ′ variables) around the phase-boundary lines of unperturbed diagram(25).

It seems very like that analogous situation (i.e. stability) takes place also
for other non-degenerate phases: 2, 6, 8, 9. Although m-potentials for them hasn’t
been found, it is very like that the Peierls conditions hold also for these phases.
It follows from the restricted phase diagram analysis: It turned out that energies
of these configurations are divided by a finite (i.e. independent of N ) gap from
excitations. For this reason, author conjectures that also these phases are stable.

For regions of width of the order of p5(t, t ′)/U 4 around phase boundaries, one
cannot formulate any statements without going into next orders of perturbation
theory. These regions, as well as regions occupied by degenerate phases with
numbers: 1,3,12 (all of them form very small subset of the phase diagram), can
undergo radical changes upon thermal and quantum perturbations, so they are
“terra incognita”. Perhaps, the approach due to Kotecký et al.(15,21) could be more
effective in analyse of such situations. In this approach, one takes into account the
‘thermal’ and ‘quantum’ perturbations in one single step. Such combination of
‘thermal’ and ‘quantum’ perturbations could be more effective in the process of
degeneracy lifting than taking into account only quantum perturbations, as in the
present DFFL-B approach(22–25).

5. SUMMARY AND CONCLUSIONS

The effective Hamiltonian and phase diagram for ground states of the t − t ′

FKM have been determined up to fourth order of perturbation theory. In the second
and third order, phase diagram was constructed by rewritting the Hamiltonian as a
sum of m-potentials. The phase diagram in the fourth order has been determined
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rigorously for some part of parameter space and by the method of restricted phase
diagrams for the remaining part.

The phase diagram is considerably more complicated than for the ordinary
FKM, but still it is manageable. Thirteen phases are present (plus their “mirrors”);
three of these phases are degenerate.

An interesting feature of the phase diagram is presence of anomally large
region occupied by the phase 5, appearing in the fourth order (the region has width
proportional to second order in the hopping constants instead of fourth order, as
one could expect).

Another aspect of results obtained is possible relation to stripe formation
in strongly correlated electron systems (I thank the referee for this remark). The
question of the relation between charge stripes, correlated electrons and high-
temperature superconductivity has been asked many times after discovery of stripes
in early nineties. Problem of stripe formation has been investigated mainly in the
framework of t−J and Hubbard models, by variety of numerical methods. Unfor-
tunately, these studies gave conflicting results(20). To explain these contradictory
observations, one can guess that both states: possessing stripe order and without
such an ordering are very close in energy, so the detection of stripes is a delicate
problem. On the other hand, appearance of stripe-like orderings in the Falicov-
Kimball model is well established, both rigorously and numerically (results of my
paper confirm this tendency; I mean appearance of phases 11 and 12). One can
ask the question: Does exist some relation between formation of stripes in FK and
Hubbard models? At this moment, I don’t know definite answer. There are some
heuristic arguments supporting existence of such a relation, but it goes beyond the
subject of this paper.

In numerous situations examined so far, it turned out that the FKM is sensitive
with respect to changes in the model (unlike to such models as, for instance, the
ferromagnetic Ising model, which is rather stable against modifications). Inclusion
of such changes as an addition of the correlated hopping, or passing to the non-
perturbative values of ‘coupling constant’ t/U , modifies the phase diagram in
strong manner. This is the case also for inclusion of the nearest neighbour hopping.
The Falicov-Kimball model exhibits enormous richness in its behaviour.

APPENDIX A: (PSEUDO)SYMMETRIES OF PHASE DIAGRAM OF

HAMILTONIANS IN ORDERS 2, 3 AND 4

Let us describe (pseudo)symmetries of the phase diagram, corresponding to
effective Hamiltonians. We will proceed order-by-order.

In the second order, the Hamiltonian is symmetric with respect to the change
h → −h and t ′ → −t ′. It is obvious that the phase diagram is symmetric with
respect to the change h → −h, if one change also configuration to its mirror
image.
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In the third order, the Hamiltonian is no longer symmetric. However, their
ground states are easily determined, because the Hamiltonian is expressible as a
sum of m-potentials, defined on 2 × 2 plaquettes. It turns out that on the phase
diagram, there are present the same phases as in the second order. The difference
between phase diagrams in the second and third order appears as a change in loca-
tion of phase boundaries; corresponding lines are shifted by a factor proportional
to t t ′2/U 2. This shift is symmetric with respect to the change h → −h. In the
other words: If some boundary between phases i and j is shifted by ε for h > 0,
then, for h < 0, the boundary between mirrors of phases i and j is shifted by −ε.

Let us analyse (pseudo)symmetries of the fourth order phase diagram. It turns
out that for every phase i appearing for h > 0, there exists corresponding mirror î
for h < 0. Phase boundaries between phases i and j and their mirrors î and ĵ are
related by:

hi/ j = At2 + A′t ′2 + Bt2t ′ + Ct4 + C ′t2t ′2 + C ′′t ′4

hî/ ĵ = −At2 − A′t ′2 + Bt2t ′ − Ct4 − C ′t2t ′2 − C ′′t ′4

which can be seen by taking into account symmetry or antisymmetry of multi-
spin interactions. Let us stress that this situation (i.e. the same structure of phase
diagram for h > 0 and h < 0 is a very peculiar property of the fourth-order Hamil-
tonian (6), (7), (8). For more general Hamiltonian, we have no such similarity.
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